
Characterizing and Modeling Non-Volatile
Memory Systems

Zixuan Wang Xiao Liu Jian Yang* Theodore Michailidis Steven Swanson Jishen Zhao
University of California, San Diego

Abstract—Scalable server-grade non-volatile RAM (NVRAM)
DIMMs became commercially available with the release of
Intel’s Optane DIMM. Recent studies on Optane DIMM systems
unveil discrepant performance characteristics, compared to what
many researchers assumed before the product release. Most of
these studies focus on system software design and performance
analysis. To thoroughly analyze the source of this discrepancy and
facilitate real-NVRAM-aware architecture design, we propose
a framework that characterizes and models Optane DIMM’s
microarchitecture. Our framework consists of a Low-level pro-
filEr for Non-volatile memory Systems (LENS) and a Validated
cycle-Accurate NVRAM Simulator (VANS). LENS allows us to
comprehensively analyze the performance attributes and reverse
engineer NVRAM microarchitectures. Based on LENS charac-
terization, we develop VANS, which models the sophisticated
microarchitecture design of Optane DIMM, and is validated
by comparing with the detailed performance characteristics of
Optane-DIMM-attached Intel servers. VANS adopts a modular
design that can be easily modified to extend to other NVRAM
architecture designs; it can also be attached to full-system
simulators, such as gem51. By using LENS and VANS, we develop
two architectural optimizations on top of Optane DIMM, Lazy
Cache and Pre-translation, which significantly improve cloud
workload performance.

Index Terms—nonvolatile memory, memory systems, simula-
tion

I. INTRODUCTION

Non-volatile RAMs (NVRAMs) [6], [34], [61] have been

envisioned as a new tier of memory in server systems, offering

comparable performance to DRAM with the durability prop-

erty of storage devices [28], [33], [53], [54], [70]. Seeing the

great value, a large body of prior studies investigated how to

exploit NVRAM to benefit future computer systems. Yet only

recently has the first server-grade NVRAM DIMM product

come to market, namely Intel Optane DC Persistent Memory

(aka. Optane DIMM) [23].

The latest characterization studies [28], [41], [42], [58],

[59], [66] exposed substantial discrepant performance char-

acteristics compared to what we thought before the real prod-

ucts were released. For instance, Figure 1 compares results

of the widely-used Persistent Memory Emulation Platform

(PMEP) [11] and our Optane DIMM server measurement

(denoted as Optane) on single-thread read and write bandwidth

(Figure 1a) and latency per cache line (CL) access (Figure 1b)

with a pointer chasing microbenchmark. The microbenchmark

randomly accesses a contiguous data region with fixed 64B

*Now at Google.
1LENS and VANS are open-sourced at GitHub [1].

0

2

4

6

8

PMEP(6DIMM) Optane(6DIMM)

B
an

dw
id

th
(G

B
/s

)

load store store-clwb store-nt

(a) Single thread bandwidth.

16
K

16
M

0

100

200

300

400

64 1 K 64 K 4 M 128 M
Access region size (byte)

La
te

nc
y

pe
rC

L
(n

s)

Optane(1DIMM) PMEP(1DIMM)

(b) PtrChasing read latency.

Fig. 1. Comparison between PMEP [11] emulation and Optane DIMM-based
real machine measurement. Store-clwb are writes followed by clwb cache
write-back instructions [20]; store-nt are non-temporal writes [20].

objects. By varying the data region size from 64B to 256MB,

we observe a clear inconsistency between the emulation and

real-system results (discussed in detail in Section II-B). Other

previous NVRAM emulators and simulators also generate dif-

ferent performance characteristics compared to real-machine

results, as discussed in Section II and Section III. As such,

previous NVRAM emulation and simulation tools are insuffi-

cient to model modern real NVRAM systems.

Moreover, Intel’s announcement [23] mentions that the

Optane DIMM adopts an on-DIMM buffer structure, although

without further details. The Optane curve in Figure 1b also

shows buffer effects at the sizes of 16KB and 16MB, respec-

tively. Both indicate that Optane DIMM adopts a much more

complex microarchitecture design than conventional DRAM

DIMMs. However, most of the existing Optane DIMM studies

focused on systems-level performance profiling and system

software design [8], [29], [42], [58], [59], without detailed

investigation on microarchitecture. Furthermore, the existing

architecture- and system-level performance profiling tools are

designed for DRAM-based memories, inefficient in investigat-

ing the architectural structure details of real NVRAM systems

as compared in Table I.

Our goal in this paper is to facilitate research on architecture

and systems design of NVRAM-based memory systems by

(1) investigating detailed performance and microarchitecture

characteristics of Optane DIMM, (2) designing a generic

architecture-level performance profiling and reverse engineer-

ing framework, which identifies the key architectural and per-

formance characteristics of NVRAM systems, and (3) devel-

oping a memory simulator that models the microarchitecture

designs of modern NVRAM DIMMs. To achieve our goal, we

make the following technical contributions:

• Profiling and reverse engineering framework. We design

a Low-level profilEr for Non-volatile memory Systems

(LENS), which consists of a set of profiling tools and mi-

crobenchmarks to analyze the architectural and performance

characteristics of NVRAM-based memory systems. LENS

is designed as a Linux kernel module. It exposes detailed

architectural characteristics of memory systems, such as on-

DIMM buffer size and hierarchy, queuing scheme, and the

access granularity of each component.

• Real-system characterization. We employ LENS to per-

form a comprehensive architecture and performance anal-

ysis on Optane DIMM-based servers. Using LENS, our

profiling reveals a detailed picture of the Optane DIMM

microarchitecture.

• NVRAM simulator. We develop a Validated cycle-Accurate

NVRAM Simulator (VANS), which models NVRAM-based

memory system architecture designs based on our char-

acterization. We validate VANS against extensive Optane

DIMM-based real-machine profiling. VANS adopts a flexi-

ble modular design, which allows users to explore a design

space with various architecture designs and extend the sim-

ulator to model other NVRAM microarchitecture designs.

• Case studies. We employ VANS to evaluate two archi-

tecture optimizations on Optane DIMM, Lazy cache and

Pre-translation, which address Optane DIMM-based mem-

ory system performance inefficiencies in cloud workloads

identified by LENS.

II. BACKGROUND AND MOTIVATION

Overview of Our Motivation. Recent Optane DIMM profil-

ing [28], [41], [42], [58], [59], [66] shows different perfor-

mance characteristics compared to many previous NVRAM

studies [45], [62]–[64], [67], [68]. However, most of the

Optane DIMM studies focus on system-level performance

analysis and system software design. Industrial documents

indicate that the memory controllers and Optane DIMMs adopt

more complex microarchitecture designs than conventional

DRAM DIMM-based memory systems, but without many of

the details. These challenges motivate us to explore microar-

chitecture design and memory system modeling based on real

NVRAM products.

A. Optane DIMM-based Server Systems

Server System Organization. Figure 2 illustrates an example

of Optane DIMM-based server systems. Optane DIMMs – de-

noted as NVRAMs – sit on the memory bus along with DRAM

DIMMs. They are controlled by the processor’s integrated

memory controllers (iMCs). Intel’s Cascade Lake is the first

microarchitecture to support Optane DIMM [19]. Specifically,

our server systems adopt one or two processor dies in each

CPU socket. Each processor die has two iMCs, and each iMC

supports three memory channels. Each channel is configurable

to have zero or one Optane DIMM.

Operation Modes. Optane DIMMs operate in one of two

modes: Memory Mode or App Direct Mode. The Memory

Mode does not support data persistence. Each memory channel

incorporates an Optane DIMM and a DRAM DIMM; the

DRAM serves as a data cache for the Optane DIMM. In

App Direct Mode, the Optane DIMMs are used as persistent

memory, which unifies the fast access interface of memory

(a) Memory mode. (b) App Direct mode.

Fig. 2. Optane DIMM-based system configurations.

with the persistence property of storage [40], [68]. For ex-

ample, programmers can directly issue load/store instructions

to access in-memory data structures while NVRAM system

software and hardware ensure that the data structures are

recoverable in the face of system crashes and power loss [57],

[63].

Known Architecture Components. Industrial documents dis-

close several architectural design components related to Op-

tane DIMM [23], [37], [48]; but most of the descriptions

do not provide the details as identified by our study (Fig-

ure 4). To ensure data persistence, each iMC maintains a

write pending queue (WPQ) and a read pending queue (RPQ)

for Optane DIMMs; the WPQs belong to the asynchronous

DRAM refresh (ADR) domain [48]. CPU ensures that the

data reaches the ADR domain is persisted during power

outage. Optane DIMMs support CPU cache line granularity

access. The current implementation adopts 3D-Xpoint chips

as NVRAM media with a 256-byte access granularity [37].

In addition, each Optane DIMM maintains buffers inside the

DIMM controller; sub-256-byte write accesses will trigger a

read-modify-write (RMW) procedure in the buffers [23].

B. Performance Discrepancy

Many previous NVRAM studies perform experiments using

NVRAM emulators and simulators, which assume that NV-

RAM performs like a slower DRAM. For instance, widely-

used NVRAM emulators PMEP [11] and Quartz [56] model

NVRAM systems by stalling the CPU for additional cycles

(estimated as the cycles that the CPU would have to wait if

DRAM is replaced by a slower NVRAM) and throttling band-

width. Other studies simply inject delays in software codes

to emulate NVRAM’s slower writes relative to DRAM [9],

[57]. However, Optane DIMM characterization [28], [41], [42],

[58], [59], [66] demonstrates that real NVRAM systems have

much more complex performance behaviors than conventional

DRAM systems. As an example, Figure 1 shows our exper-

iments that illustrate two observations on the performance

discrepancy. First, Figure 1a shows that PMEP models both

load and store bandwidth higher than the bandwidth of non-

temporal stores (store-nt). However, with Optane DIMM,

using non-temporal stores lead to a higher bandwidth than the

others. Second, PMEP maintains a stable latency per cache line

read, as shown in Figure 1b. If Optane DIMM were a slower

DRAM, the curve would appear stable with a similar shape

TABLE I
COMPARISON OF PROFILING TOOLS.

Tools Basic On-DIMM buffer Long tail-latency*

Latency Bandwidth Addr mapping Size Granularity Hierarchy Frequency Granularity

MLC [21] � � � � � � � �
perf [15] � � � � � � � �
DRAMA [43] � � Partial � � � � �
LENS (our design) � � Partial � � � � �

* Long write latency during repeated writes to the same memory area.

as the PMEP curve. However, Optane DIMM read latency

increases with the growth of the pointer chasing region size,

showing three clear segments in the curve. Both observations

show that the real NVRAM system is not simply a slower

DRAM DIMM-based system.

C. Inefficient NVRAM Simulation Models

Previous memory simulators, such as DRAMSim2 [46]

and Ramulator [32], model memory architecture based on

conventional DRAM systems. We find that these simulation

models fail to accurately match the performance behaviors of

Optane DIMM, as demonstrated in Figure 3. In Figure 3a,

we compare the load/store bandwidth and latency of var-

ious memory simulators with Optane DIMM. The average

accuracy is evaluated as the arithmetic mean of accuracies

under experiments with different access sizes. Figure 3a shows

a large mismatch of bandwidth and latency characteristics

between simulation and our real-system profiling. Figure 3b

shows the same experiment as in Figure 1b, performed by

Ramulator simulation. Similar to PMEP results, the simulated

read latency appears to be stable, whereas Optane DIMM sys-

tem profiling shows an increasing latency with larger pointer

chasing regions.

0.00

0.25

0.50

0.75

1.00

DRAMSim2
DDR3

Ramulator
DDR4

Ramulator
PCM

A
ve

ra
ge

ac
cu

ra
cy

bw-ld bw-st lat-ld lat-st

(a) Bandwidth and latency.

0

100

200

300

256 1 K 8 K 64 K
Access region size (byte)

La
te

nc
y

pe
rC

L
(n

s)

Optane Ramulator-PCM

(b) PtrChasing read latency.

Fig. 3. Comparison between memory simulators and Optane DIMM system
profiling. (a) Simulator average accuracy wrt. Optane DIMM load/store
bandwidth (bw-ld and bw-st) and latency (lat-ld and lat-st). (b) Comparison
between Ramulator and Optane DIMM on read latency per cache line with
the pointer chasing test.

D. Insufficient Profiling Tools

In order to develop a memory simulator that models the

sophisticated performance behavior and microarchitecture of

real NVRAM systems, we need to collect sufficient informa-

tion about detailed performance characteristics. This requires

a comprehensive architecture-level memory system profiling.

Most previous performance profiling tools focus on investi-

gating basic memory system performance characteristics, such

as latency, bandwidth, and access counts. Beyond these char-

acteristics, DRAMA [43] examines certain address mapping

schemes. However, as illustrated in Table I, none of the

widely-used performance profiling tools allows us to analyze

detailed on-DIMM buffering and management schemes of

Optane DIMM.

III. LENS: LOW-LEVEL NVRAM PROFILER

To address the challenge of insufficient profiling tools, we

propose a Low-level profilEr for Non-volatile memory System
(LENS). LENS consists of a set of NVRAM profiling tools

and low-level microbenchmarks. With detailed performance

profiling, LENS also allows us to reverse engineer the mi-

croarchitectural design of NVRAM systems with on-DIMM

buffers and various control schemes. In this paper, we use

LENS to profile the detailed architecture design of Optane

DIMM, discussed in Section III-B.

A. LENS Framework

LENS adopts three key components – probers – to examine

the following three aspects of NVRAM architecture design,

respectively.

• Buffer prober – Analyzes on-DIMM buffers’ architecture

and their properties, including buffer (or queue) hierarchy,

capacity, and access granularity.

• Policy prober – Analyzes NVRAM control policies on data

migration and multi-DIMM interleaving.

• Performance prober – Facilitates the above two probers

to analyze performance characteristics, including memory

bandwidth and the access latency of various buffers and

queues in NVRAM DIMMs and iMCs.

Each prober employs customized microbenchmarks to trigger

specific hardware behaviors, which leads to different latency

and bandwidth patterns with different memory architecture

properties (Table II). By analyzing the performance patterns,

we identify the corresponding microarchitecture properties and

parameters.

TABLE II
LENS OVERVIEW.

Prober Microbenchmark Hardware Behavior Microarchitecture

Buffer
PtrChasing (64B block) Buffer overflow Buffer size
PtrChasing (various block) R/W amplification Buffer entry size
Read-after-write Data fast-forwarding Buffer hierarchy

Policy
Sequential/Strided write Interleaving speedup Interleaving scheme
Overwrite (256B region) Data migration Migration latency
Overwrite (various region) Data migration Migration block size

Perf.
Strided write Stable amplification Internal bandwidth
N/A N/A Internal latency

Microbenchmarks. LENS provides three microbenchmarks:

pointer chasing, overwrite, and stride.

Pointer chasing is a random memory access benchmark:

it divides a contiguous memory region – referred to as a

pointer chasing region (PC-Region) – into equal-sized blocks

(PC-Blocks); it reads/writes all PC-Blocks in a PC-Region in

random order, and sequentially accesses data within each PC-

Block. In order to bypass CPU caches, while still generating

cacheline-sized memory accesses, all pointer chasing tests are

implemented using non-temporal AVX512 load/store instruc-

tions. Pointer chasing has three variants to detect various buffer

architecture characteristics: (1) collecting average latency per

cache line with a fixed PC-Block size across various PC-

Region sizes, (2) quantifying read and write amplification by

using a fixed PC-Region size, while varying the size of PC-

Block, (3) issuing read-after-write requests, which issue writes

in a pointer chasing order, followed by reads in the same order.
Overwrite repeatedly generates sequential writes to a fixed

memory region, and then measures the execution time of each

iteration. It has two variants: (1) collecting the execution time

of each write iteration with a fixed memory region size, (2)

measuring the frequency of long tail-latency by changing the

memory region size.
Stride sequentially reads or writes to a set of stride cache

lines with a fixed striding distance. It has two variants: (1)

measuring bandwidth by using a fixed striding distance and

increasing the access size, (2) characterizing multi-DIMM

interleaving by a fixed total access size and a variable striding

distance.

Buffer Prober detects the on-DIMM buffer capacity, entry

size, and organization, by measuring the latency change caused

by buffer overflow and read/write amplification.
To identify the buffer capacity, the buffer prober runs the

pointer chasing microbenchmark with fix-sized objects (PC-

Block). The prober measures the average read/write latency by

scanning through various pointer chasing region (PC-Region)

sizes. Once a PC-region is sufficiently large to overflow a

buffer, the prober will detect a rapid increase in read/write

latency, e.g., the inflection point of the Optane latency curve

at the 16KB region size in Figure 3b. As such, we estimate that

the buffer capacity equals to the PC-Region size corresponding

to the inflection point in the latency curve.
The prober also examines buffer organization by answering

two questions: (i) How many levels in the buffers? (ii) If there

are multiple levels of buffers, are they organized as a multi-

level inclusive hierarchy or multiple independent buffers? We

answer question (i) by analyzing the aforementioned buffer

overflow results: the number of the inflection points in a

latency curve indicates the number of buffers with different

capacities. In fact, we identify that Optane DIMMs adopt

multiple levels of on-DIMM buffers by inducing multiple

overflows under different PC-Region sizes (Section III-C). To

answer question (ii), the prober measures the data fast-forward

effect – the effect of reading the existing dirty data in a buffer

before it is written back to the underlying memory or the

next level of buffer – by a pointer chasing read-after-write

(RaW) test. Independent buffers can fast-forward data from

each buffer in parallel. Therefore, the RaW latency is shorter

than the sum of independently collected read latency and write

latency. A multi-level inclusive buffer hierarchy does not have

such a parallel data fast-forward behavior.
To identify the buffer entry size, the prober evaluates the

read/write amplification – measured as a ratio of actually

read/written data size to the requested data size. For example,

let’s consider a buffer with 256B entries, where a read request

of 64B will read 256B into the buffer, leading to a read

amplification of 4. As one memory bus transfer has a fixed size

with a fixed latency, a read/write amplification will result in

more bus transfers detected as a latency increase. In practice,

the buffer prober identifies the entry size of various buffers

by a series of pointer chasing tests with different PC-Block

sizes. Once the read/write amplification drops to one, that

PC-Block size is considered as the buffer entry size. We

observe that Optane DIMMs adopt different entry sizes in

different levels of buffers (Section III-C). Due to the lack of

hardware counters we can access on Optane DIMM machines,

we indirectly evaluate the read/write amplification by deriving

an “amplification score”. It is calculated as the ratio of latency

of the buffer overflow case to the non-overflow case. As such,

the amplification score drops to one if and only if the actual

amplification drops to one.

Policy Prober investigates NVRAM control policies, includ-

ing data migration (e.g., for wear-leveling) and multi-DIMM

interleaving policy. Typical NVRAM wear-leveling schemes

migrate data from one NVRAM media location to another

to maintain evenly distributed wear out. The prober detects

the frequency, granularity, and latency overhead of such data

migration procedures.
To detect the migration frequency and latency, the prober

employs the overwrite microbenchmark to constantly write

256B regions and measures the latency of each 256B write.

Once a migration occurs in this region, e.g., triggered by

a wear-leveling algorithm, the subsequent writes cannot be

issued until the migration completes. As a result, the latency

of a write delayed by a migration is over a magnitude higher

than a normal write, showing as a tail latency. The prober

estimates the migration latency to be equal to the elevated tail

latency. In addition, the prober also collects the time intervals

between two consecutive migrations to calculate the migration

frequency.
To detect the migration granularity, the prober performs

overwrite tests on regions of various sizes and collects the

frequency of migration. Once the region size is sufficiently

large to cross over two migration blocks, the frequency will

drop. Therefore, we identify the migration granularity as the

overwrite region size that leads to a frequency drop.
The policy prober also examines the multi-DIMM inter-

leaving behavior, which is an address mapping mechanism

to achieve higher bandwidth by spreading data among dif-

ferent DIMMs. To detect such an interleaving scheme in

an NVRAM design, the prober measures the speedup of

sequential and strided writes on NVRAM DIMMs. Compared

to non-interleaved DIMMs, interleaved DIMMs result in lower

execution time with same-sized sequential writes (Figure 7a).

The prober also identifies the interleaving granularity (the size

of the maximum continuous memory block assigned to each

TABLE III
SERVER HARDWARE CONFIGURATION.

CPU
Intel Cascade Lake engineering sample
24 Cores per socket, 2.2 GHz
2 sockets, HyperThreading off

L1 Cache 32KB 8-way I$, 32KB 8-way D$, private
L2 Cache 1MB, 16-way, private
L3 Cache 33MB, 11-way, shared

TLB
L1D 4-way 64 entries, L1I 8-way 128 entries
STLB 12-way 1536 entries

DRAM
DDR4, 32GB, 2666MHz,
2 sockets, 6 channels per socket

NVRAM
Intel Optane DIMM, 256 GB, 2666 MHz
2 sockets, 6 channels per socket

DIMM) by detecting the repeated pattern in sequential and

strided writes execution time on interleaved NVRAMs.

Performance Prober facilitates the analysis of the other two

probers to measure the device bandwidth and latency for

on-DIMM architecture components. The performance prober

measures the read bandwidth of a buffer by a stride read

experiment, with a stride size equals to the buffer entry size.

Each buffer entry is read exactly once to prevent the impact

of an upper-level buffer on the bandwidth. To measure the

latency of accessing a buffer, the prober takes pointer chasing

latency results from the buffer prober and then estimates the

buffer miss rate based on the buffer size and access granularity.

Then, the prober calculates the buffer latency as a function of

pointer chasing latency and buffer miss rate.

LENS Implementation. We build LENS as a Linux kernel

module to avoid the overhead of switching between user and

kernel spaces. We implement all our microbenchmarks in

assembly language to enforce a well-controlled memory access

behavior. We also disable process preemption and hardware

prefetchers to avoid noises on probing results.

B. Optane DIMM System Characterization

We employ LENS to characterize the architecture details of

a real server memory system with Optane DIMMs.

Real System Configuration. Table III lists our server hard-

ware configuration. We set the Optane DIMMs to App Direct

mode and use a customized Linux v4.13 kernel that supports

App Direct mode. We use the ipmctl tool [26] to config-

ure these Optane DIMMs in non-interleaved mode; we also

employ the ndctl tool [27] to create a Linux pmem device

on a single Optane DIMM from the local NUMA domain.

LENS creates a dummy filesystem on the pmem device and

performs experiments in the kernel space. We set the Model

Specific Register (MSR) 0x1a4 to 0xf to disable the following

CPU cache prefetchers to avoid noises in profiling [55]: L2

hardware prefetcher, L2 adjacent cache line prefetcher, DCU

prefetcher, and DCU IP prefetcher. We run our experiments for

over 500 times and show average profiling results with error

envelopes/bars (some error envelopes may be too narrow to

be visible in the figures).

Overview of Our Characterization and Observations. Fig-

ure 4 shows an overview of our real-machine characterization.

Fig. 4. LENS probers and Optane DIMM parameters. Red numbers are
obtained from Intel documents; blue numbers are characterized by LENS.

Each prober identifies certain memory system architecture and

performance characteristics, as illustrated by arrows in the

graph. Figure 8 shows details of the Optane DIMM microar-

chitecture identified by our characterization. We identified the

write-pending-queue (WPQ) size and multi-DIMM interleav-

ing scheme in iMC. We also identified two on-DIMM buffers,

a 16KB SRAM-based read-modify-write (RMW) buffer and a

16MB DRAM-based address indirection translation (AIT) [3]

buffer, with 256B and 4KB access granularity, respectively.

We find that these two buffers are organized as a two-level

inclusive buffer hierarchy rather than independent buffers. We

also identified the size of a load-store-queue (LSQ) [49], which

reorders the incoming requests to perform write combining.

Finally, we identified a long tail-latency effect, which may be

caused by wear-leveling data migration. We present details of

our characterization results and observations in Section III-C

and Section III-D.

The Existence of the Architecture Components. Indus-

trial articles revealed the existence of several aforementioned

components, as described in Section II-A. In addition, Intel’s

announcement [23], [49] declared that transactions could be

re-ordered in Optane DIMM, indicating an on-DIMM reorder

queue, which we refer to as LSQ. Optane DIMM is also

believed to have on-DIMM SRAM and DDR4 DRAM mod-

ules [31]. However, these articles do not provide detailed

information about these components, such as size, access gran-

ularity, management policy, and latency. We employ LENS

to profile these parameters and identify other architecture

components.

Profiling Results Confirmation. We confirmed as much of

our profiling results as possible with the vendor, including

our bandwidth profiling, idle latency of sequential and random

accesses, and load latency across various access granularities.

C. On-DIMM Buffer Analysis

We run the LENS buffer and performance probers to profile

the on-DIMM buffer architecture design.

Buffer Capacity. Figure 5 shows LENS buffer prober results.

Figure 5a and Figure 5b show a pointer chasing read/write test

with various PC-Block and PC-Region sizes. The experiments

measure latency per cache line (CL) access. The shape of

the curves exposes the read requests overflow points at 16KB

and 16MB, where the read latency drastically changes. This

indicates that the Optane DIMM has two levels of read buffers,

51
2B 4K 16
K 16

M

0

100

200

300

400

64 1 K 64 K 4 M 256 M
Access region size (byte)

La
te

nc
y

pe
rC

L
(n

s)
ld st

(a) Load/store latency with 64B PC-
Block.

51
2B

16
M

0

50

100

150

256 4 K 64 K 4 M 256 M
Access region size (byte)

La
te

nc
y

pe
rC

L
(n

s)

ld-256 st-256

(b) Load/store latency with 256B PC-
Block.

4K 16
K

16
M

100

500

900

1300

64 1 K 64 K 4 M 256 M
Access region size (byte)R

ou
nd

tr
ip

la
tp

er
C

L
(n

s) R+W RaW

(c) RaW latency and R+W latency with
64B PC-Block.

0

20

40

60

64 1 K 64 K 4 M 256 M
Access region size (byte)

L2
TL

B
M

P
K

I

(d) L2 TLB MPKI in Figure 5a load test.

Fig. 5. LENS buffer prober tests on Optane DIMM. The curves show average results of 500 runs; shaded areas represent error envelopes. In (c) RaW is
read-after-write, R+W is the sum of load and store latency in (a).

25
6B 4K

1.0

1.5

2.0

64 256 1 K 4 K
PC-Block size (byte)

R
ea

d
am

p.
sc

or
e

AIT Buf RMW Buf

(a) Read amplification score.
25

6B

51
2B

1

4

7

64 256 1 K 4 K
PC-Block size (byte)

W
rit

e
am

p.
sc

or
e

LSQ WPQ

(b) Write amplification score.

Fig. 6. Read(a) and write(b) amplification scores in our buffer prober test.

one 16KB and the other 16MB. Figure 5a also shows that

the write curve (denoted by st) has two overflow points at

512B and 4KB, respectively. This indicates that the memory

has two write buffers, namely WPQ and LSQ, of two distinct

capacities. Note that the L2 TLB of our server machine has

1536 entries, which can store the address translation of up

to 4KB×1536, i.e., 6MB, of data. However, Figure 5a shows

that the read latency significantly increases at 16MB instead

of 6MB, ruling out that this happens due to L2 TLB misses.

Furthermore, we track L2 TLB misses for the load test. As

shown in Figure 5d, the L2 TLB miss rate remains stable

without significant change at 16KB and 16MB access regions.

Therefore, we conclude that L2 TLB misses are not the main

reason for the sudden latency increases in Figure 5a.

We refer to the 16MB buffer as AIT Buffer. Because its

read latency is approximately 100ns as shown in Figure 5a,

it is likely to locate inside the on-DIMM DRAM, where AIT

resides [3], [23]. We believe that the 512B buffer is WPQ [48],

given its small size; the 4KB buffer is an on-DIMM LSQ that

reorders the read/write requests [49].

Access Granularity. Figure 6a shows our read amplification

tests. Our results indicate that the RMW Buffer and AIT

Buffer adopt 256B and 4KB access granularities, respectively.

Figure 6b shows our buffer write amplification tests. It demon-

strates that the two write queues, WPQ and LSQ, adopt 512B

and 256B granularities, respectively. As a result, a mfence will

cause the WPQ to flush in total 512B data; the LSQ combines

64B writes into 256B in order to reduce RMW operations.

Buffer Hierarchy Organization. Figure 5c shows our read-

after-write (RaW) experiment to characterize the buffer hier-

archy organization. Figure 5c indicates that RMW Buffer and

AIT Buffer form a two-level inclusive hierarchy – if they were

independent from each other, they would have demonstrated

a RaW latency speedup at 16MB by fast-forwarding data in

parallel. They do not appear to be exclusive either, because

they adopt different access granularities and entry sizes.

Figure 5c also demonstrates that the read-after-write latency

(denoted as RaW) is significantly higher than the total latency

0

5

10

15

64 4 K 8 K 12 K 16 K
Access region size (byte)

E
xe

cu
tio

n
tim

e
(u

s)

1 DIMM 6 DIMMs

(a) Execution time of sequential write test.

0.2

1.0

10.0

60.0

0 100 k 200 k
Overwrite iteration

Ta
il

la
te

nc
y

(u
s)

(b) Tail latency in overwrite test. Each
iteration is one 256B write.

0.00

0.02

0.04

0.06

256 1 K 8 K 64 K 512 K
Access region size (byte)

R
at

io
of

lo
ng

ta
il

la
t(

‰
)

(c) Ratio of long tail latency with various
overwrite granularities.

0

100 k

200 k

0 30 60 90
Time (ms)

L2
TL

B
M

is
s

pe
rm

s

(d) L2 TLB miss per millisecond in the
overwrite test of (b).

Fig. 7. LENS policy prober tests on Optane DIMM.

of performing individual reads and writes (denoted as R+W)

for small PC-Regions. The key reasons are small-sized RaW

requests (i) trigger frequent memory bus redirection [69] and

(ii) under-utilize the WPQ and LSQ capacity. Therefore, due

to the identified architectural design, small-sized requests in

Optane DIMMs tend to perform better with pure reads and

writes than with mixed read and write access patterns. In

addition, the high RaW latency with small PC-Region sizes

also indicates that mfence flushes the LSQ, because: (i) RaW

latency reduces when the PC-Region size increases; (ii) RaW

latency equals the R+W latency when the PC-Region size

reaches 4KB, the size of the LSQ.

D. Policy Analysis

We run LENS policy and performance probers to profile

Optane DIMM management schemes.

Multi-DIMM Interleaving Analysis. Figure 7a shows a

multi-DIMM interleaving policy analysis. LENS measures the

execution time of various sized sequential writes on interleaved

and non-interleaved DIMMs, respectively. In the interleaved

experiment, the first 4KB has a similar execution time as in

the non-interleaved case, indicating that the first 4KB is written

to a single DIMM. We also observe a repeated execution time

pattern every 4KB, indicating that different 4KB data writes

are directed to different DIMMs. These observations indicate

a 4KB granularity for multi-DIMM interleaving. We consider

the reason for the interleaving granularity is to fully utilize the

4KB sized LSQ and 4KB entries in AIT Buffer.

Tail Latency Analysis. Figure 7b shows the overwrite exper-

iment for tail latency analysis. The policy prober constantly

writes data to the same 256B memory region, and measures

Fig. 8. VANS overview.

the latency of each 256B write. We observe a long tail

latency every ∼ 14, 000 write iterations (i.e., every 3.4MB for

256B overwrite test), which incurs over 100× latency penalty

on average. We do not observe similar trends on DRAM.

Moreover, L2 TLB miss rate remains stable in the overwrite

experiment as shown in Figure 7d. Therefore, we consider

wear-leveling as a major contributor to the tail latency.

To study the size of the blocks that wear-leveling tracks,

we increase the size of the overwrite test region and count

the frequency of the long tail latency. Each test writes the

same amount of data to NVRAM. As shown in Figure 7c,

the frequency of long tail latency dramatically drops, once we

overwrite on 64KB or larger memory regions. This indicates

that a possible block size for wear-leveling is 64KB.

IV. VANS: VALIDATED NVRAM SIMULATOR

Based on our profiling observations, we build Validated
cycle-Accurate NVRAM Simulator (VANS) that models Optane

DIMM’s microarchitectural design and its parameters. Figure 8

depicts an overview of VANS (CPU core and LLC are not part

of VANS). We adopt a modular implementation by decoupling

the architecture’s modules as much as possible, in order to

allow users to modify or extend the simulator with various

architectural designs. VANS also offers an interface to be

attached to full-system simulators, such as gem5 [4].

Because no publicly available formal verification tool ex-

ists for NVRAM DIMMs, we validate VANS’s accuracy by

comparing the simulated bandwidth, load and store latency,

and various SPEC CPU benchmarks performance results with

Optane DIMM real-system profiling. In addition, the on-

DIMM DRAM model is verified by Micron’s verification

model [38] and Cadence toolchain [5].

A. Simulation Model Design

VANS models both released Optane DIMM hardware com-

ponents (e.g., WPQ in iMC) and undocumented microarchitec-

tural components (e.g., LSQ, multi-level buffers). The iMC in

VANS supports multi-DIMM control, which controls multiple

DRAM and NVRAM DIMMs to provide both Memory and

App Direct modes. We implement the WPQ in iMC with

Asynchronized DRAM Refresh (ADR). The NVRAM DIMM

model consists of an LSQ, an RMW Buffer, and an AIT.

The LSQ serves as the highest-level storage in the DIMM,

directly queuing load/store requests from the iMC. During

each scheduling epoch, the LSQ performs write combining

to reduce the number of read-modify-write operations.

The RMW Buffer receives read and write requests from

the LSQ, and accesses the AIT Buffer at certain granularity

(by default 256B based on our Optane DIMM analysis). The

RMW Buffer performs read-modify-write operations if write

requests are smaller than 256B. We place this buffer in SRAM,

based on our Optane DIMM profiling. The AIT consists of a

translation table and a data buffer (AIT Buffer). The translation

table stores the records of CPU address to media address

translation. It also stores the media wear-leveling records in

each table entry. If one media block is wearing out, AIT stalls

the inflight CPU writes to this block, migrates the data into

another media block, updates the translation record, and then

resumes the CPU write. The AIT Buffer stores data from the

media to accommodate read and write requests from RMW

Buffer. We place the AIT table and buffer in the on-DIMM

DRAM, based on our Optane DIMM profiling.

VANS adopts a first-come-first-serve scheduling policy by

default inside the NVRAM, based on our Optane DIMM

profiling. In addition, on the DIMMs, both RMW and AIT

buffers maintain a state machine for each buffer entry running

in parallel. The RMW Buffer issues FIFO requests to the AIT

Buffer. The AIT Buffer issues FIFO requests to the NVRAM

media. The scheduling policy can be modified by users to

adapt to other NVRAM DIMM devices (Section IV-E).

The iMC and the NVRAM DIMM communicate by a

request/grant scheme [49]: for example, when the iMC needs

to read a cache line from NVRAM DIMM, it sends a cache

line read request and waits for NVRAM DIMM’s response.

When the NVRAM DIMM finishes fetching this cache line

into the RMW Buffer, it notifies the iMC by sending a data-

is-ready signal and requests an entry in the iMC’s read pending

queue (RPQ). It then sends data to the RPQ, after the iMC

allocates the space for it.

Optane DIMM adopts an unpublished DDR-T protocol,

which extends DDR4 with persistence-related commands.

Therefore, we model the on-DIMM DRAM timing based on

the DDR4 protocol.

B. DRAM Model Verification

To verify our DRAM model, we first catch memory traces

from SPEC2006 and SPEC2017 benchmarks listed in Ta-

ble IV; these traces are fed into VANS to obtain internal

DRAM command traces. Then, we employ Micron’s DDR4

verification model [38] with Cadence toolchain [5] to test these

command traces. The results demonstrate that our model does

0

100

200

300

400

64 1 K 32 K 1 M 32 M
Access region size (byte)

La
te

nc
y

pe
rC

L
(n

s)
Optane-ld Optane-st VANS-ld VANS-st

(a) Pointer chasing test (64B PC-
Block size) on non-interleaved
DIMM.

0

100

200

300

400

64 1 K 32 K 1 M 32 M
Access region size (byte)

La
te

nc
y

pe
rC

L
(n

s)

Optane-ld Optane-st VANS-ld VANS-st

(b) Pointer chasing test (64B
PC-Block size) on interleaved
6DIMMs.

1

2

3

4

64 1 K 16 K 1 M 16 M
Access region size (byte)

R
ea

d
am

pl
ifi

ca
tio

n

Optane VANS

(c) RMW Buffer’s read amplifica-
tion in Figure 9a test.

0.2

1.0

10.0

100.0

0 50 k 100 k
Overwrite iteration

Ta
il

la
te

nc
y

(u
s)

Optane-overwrite VANS-overwrite

(d) Overwrite (256B region), each
iteration is one 256B write.

0.00

0.25

0.50

0.75

1.00

Lat-ld Lat-st BW-ld BW-st

A
cc

ur
ac

y

(e) VANS accuracy over different
metrics with different access sizes.

Fig. 9. VANS performance validation with microbenchmarks: (a-c) pointer chasing and (d) overwrite. (e) VANS overall accuracy on load/store latency and
bandwidth.

0

100

200

300

400

64 1 K 32 K 1 M 16 M
Access region size (byte)

La
te

nc
y

pe
rC

L
(n

s)

ld st 2GB 4GB 8GB 16GB

(a) DIMM capacity.

0

100

200

300

400

64 1 K 32 K 1 M 16 M
Access region size (byte)

La
te

nc
y

pe
rC

L
(n

s)

ld st 1DIMM 2DIMM 4DIMM 6DIMM

(b) Number of DIMMs.

Fig. 10. Sensitivity study of memory configurations.

not generate any illegal DDR4 command, showing that our

on-DIMM DRAM model complies with DDR4 specification.

C. Validation with Microbenchmarks

We use microbenchmarks to validate the accuracy of

VANS’s architecture model. We catch memory traces of LENS

microbenchmarks and feed them into VANS. We run VANS

alone in trace mode2 and compare the simulated load/store la-

tency, bandwidth, and read amplification with Optane DIMM-

based real-machine results. Overall, our evaluation shows that

VANS achieves an average 86.5% accuracy across four metrics

(Figure 9e). Figure 9 (a-d) shows various performance curves

generated by simulation and real-system profiling.

Figure 9a shows the load and store latency of the pointer

chasing microbenchmark across different access region sizes

with single-DIMM configuration. The store latency curves of

VANS match the curves of real-system profiling well with

a difference lower than 10% across all the access region

sizes. The reason for the deviation of store latency at access

region sizes smaller than 4KB (31.54%) is that small-sized

write tests do not overflow the NVRAM buffers or queues

on the real machine. Therefore, the store latency collected

from real machine experiments is dominated by CPU on-core

latency (e.g., the latency of executing mfence), which is not

evaluated by this set of simulations without attaching a CPU

model.

Figure 9b shows the pointer chasing latency of six DIMMs

with interleaved configuration. We apply the 4KB-based inter-

leaving scheme in VANS. Figure 9b shows an average 12%

difference between simulation and real machine profiling.

Figure 9c validates the RMW Buffer read amplification in

pointer chasing. We employ Intel’s in-house performance pro-

file tool to investigate Optane DIMM’s read amplification in

RMW Buffer. We compare the results with the corresponding

statistics generated by VANS. The difference across the curves

is within 9%. Due to the limitation of Intel’s profiling tool, we

cannot compare other hardware counters.

2We run VANS alone without gem5, because gem5 does not support the
non-temporal AVX512 instructions in the microbenchmarks.

TABLE IV
EVALUATED SPEC CPU BENCHMARKS.

SPEC Workload LLC MPKI Footprint

2006

gcc 2.9 1.2 GB
mcf 27.1 9.1 GB

sjeng 2.7 0.63 GB
libquantum 3.4 2.3 GB

omnetpp 2.1 1.4 GB
cactusADM 2.0 2.2 GB

lbm 7.7 2.9 GB
wrf 2.4 1.0 GB

2017

gcc 21.5 1.1 GB
mcf 26.3 8.7 GB

omnetpp 2.1 0.96 GB
deepsjeng 2.5 0.58 GB

xz 2.7 1.8 GB

Figure 9d shows the tail latency for a 256B overwrite test.

Each “iteration” performs a 256B write to a single NVRAM

DIMM. The simulation matches the real-machine profiling in

terms of tail latency length and interval.

We validate VANS accuracy with 4GB DIMM capacity (i.e.,

4GB NVRAM media size), with a 256GB Optane DIMM

media size. To study the impact of media size, we investigate

pointer chasing benchmark on VANS with different media

sizes (buffer and queue sizes remain unchanged). Figure 10a

compares VANS-ld and VANS-st curves in Figure 9a (noted

as ld and st in Figure 10a) with curves generated by various

NVRAM media capacities. Media capacity does not affect the

latency curves, because the media latency is hidden by on-

DIMM buffers and queues. Figure 10b shows a sensitivity

study on the number of DIMMs. With more DIMMs, the

buffering effect on load latency is postponed, and the store

latency reduces once memory access overflows the WPQ.

D. Validation with SPEC CPU Benchmarks

To further validate VANS, we compare VANS+gem5 full

system simulation with real-machine profiling on SPEC CPU

benchmarks [50], [51].

Benchmarks. We employ SPEC CPU 2006 [50] and 2017 [51]

benchmark suites in our experiments. We first run all SPEC

CPU benchmarks in speed mode on the Optane DIMM-based

server machine. We use Linux perf [15] and Intel’s Emon [22]

tools to profile each benchmark. Based on the profiling,

we select the memory-intensive workloads that have at least

two last-level cache (LLC) misses per thousand instructions

(MPKI) for the rest of our experiments. Table IV shows the

selected benchmarks, as well as their LLC MPKI statistics and

main memory footprints.

0

1

2

3

4

0 1 2 3 4
Server DRAM IPC

G
E

M
5

IP
C

(a) IPC.

0

25

50

75

100

0 25 50 75 100
Server DRAM LLC Miss Rate

G
E

M
5

LL
C

M
is

s
R

at
e

(b) LLC Miss.

0.00

0.25

0.50

0.75

1.00

cactu gcc gcc17 lbm libq mcf mcf17 omn omn17 sje sje17 wrf xz17
Workload

S
pe

ed
up

Optane VANS Ramulator

(c) Speedup comparison between simulators and Optane.

0.00

0.25

0.50

0.75

1.00

Ramulator VANS

A
cc

ur
ac

y

(d) Accuracy.

Fig. 11. VANS performance validation with SPEC CPU 2006 and SPEC CPU 2017. (a,b) IPC and LLC miss ratio comparison between DRAM-based
simulation and the server with DRAM main memory. (c) Speedup comparison between NVRAM-based simulation and the server with Optane DIMM main
memory. (d) Accuracy (geometric mean).

TABLE V
SIMULATED SYSTEM CONFIGURATION.

CPU
Core 4 cores, out-of-order, 2.2GHz
ROB-SQ-LQ 224-56-72 entries
L1 Cache I$ 32KB 8-way, D$ 32KB 8-way, private
L2 Cache 1MB, 16-way, private
L3 Cache 32MB, 16-way, shared

TLB
L1I 128 entries 8-way, L1D 64 entries 4-way
L2TLB 1536 entries (1024 d-entries, 512 i-entries)

WPQ 512B
DRAM Main Memory

Configuration DDR4 2666MHz 4-channel, 4GB/channel
Timing tCAS(19) tRCD(19) tRP(19) tRAS(43)

NVRAM Main Memory
Configuration 2666MHz 6-channel, 4GB/channel
Interleaving 4KB interleaving
LSQ 64 entries, 64B line
RMW Buffer 64 entries, 256B line
AIT Buffer 4096 entries, 4KB line
Internal DRAM 512MB DDR4 2666MHz
Operation Mode AppDirect

Software
Linux Kernel v5.1.15
GNU gcc v9.1

Simulator and Real Machine Configurations. We attach

VANS to gem5 to conduct full system simulations. We modify

gem5 to model the Cascade Lake microarchitecture [60] that

we adopt in our server machine. Table V shows the details

of our server machine configurations. We perform two sets

of experiments on the server with (1) pure DDR4 DRAM

DIMM main memory and (2) Optane DIMM-based NVRAM

main memory, respectively. The Optane DIMMs operate in

Memory mode and are exposed as NUMA nodes [16]. Each

workload is binded to a local Optane NUMA node. Our full

system simulation adopts the same system configurations. The

experiments on the DRAM-based server are used to evaluate

the accuracy of our gem5 modification. To this end, we ensure

the accuracy of the DRAM timing simulation attached to

gem5 by modifying VANS to simulate DDR4 DIMMs with a

formally verified DDR4 protocol timing model (Section IV-B).

In experiments on NVRAM DIMMs, we configure VANS to

have the same microarchitecture and parameters of Optane

DIMM, based on industrial documents and LENS characteri-

zation observations (Section III). To compare VANS with other

memory simulators, we attach Ramulator [32] PCM model to

gem5.

Results. Each simulation has two stages: (1) a warm-up

stage that employs the gem5 simple CPU model to achieve

a stable LLC MPKI; (2) an execution stage that executes at

least two billion instructions on gem5 detailed CPU model.

We first evaluate the accuracy of our gem5 modification by

DDR4 DRAM-based system experiments. We compare the

execution stage instruction per cycle (IPC) and LLC miss

rate of each benchmark between DRAM-based simulation

and server profiling. Figure 11a shows that the accuracy of

IPC is 61.2% on average (geometric mean). As we ensure

the accuracy of our DRAM timing simulation by formal

verification, the main reason for the accuracy loss is that

we cannot fully implement Cascade Lake microarchitecture,

due to the limited architecture details that can be modeled

in gem5. Figure 11b shows a comparison of LLC miss rate

(LLC miss / LLC total references). The average accuracy is

85.5%. Note that we turn off the cache prefetchers on both

our server machine and simulation to avoid noises. Figure 11c

shows a comparison of our NVRAM-based simulation with

Optane DIMM server profiling. We calculate speedup as

Speedup(workload) =
ExecT imeDRAM (workload)

ExecT imeNVRAM (workload)

VANS+gem5 achieves an accuracy of 87.1% on average (ge-

ometric mean) across various benchmarks, despite the less ac-

curate CPU simulation model used. Ramulator (PCM)+gem5

only achieves an average accuracy of 65.6%.

E. Discussion

Simulator validation and verification methodologies. We

adopt the same verification and validation methodologies used

by various existing architecture simulators. DRAM simulators,

such as DRAMSim2 [46] and Ramulator [32], also used the

Micron’s verification model to verify their DRAM models. Our

performance-based validation methodology is also adopted

by several widely-used architecture simulators [14], [52]:

Amber [14], an SSD simulator, is validated by comparing

simulation results with SSD products on (i) microbenchmark

latency and bandwidth and (ii) bandwidth, power, and system

performance of real workloads. MGPUSim [52], a multi-GPU

simulator, employs (i) microbenchmarks to stress test each mi-

croarchitecture component and (ii) benchmarks, selected from

two benchmark suites, to validate the performance accuracy

of the simulator.

Modeling Other NVRAM DIMMs. VANS is initially devel-

oped to model Optane DIMM. But it can be flexibly adapted

to other NVRAM DIMM architectures. To do so, users first

0.0

2.5

5.0

7.5

10.0

CPI LLC miss TLB miss

N
or

m
.v

al
ue

Read Rest

(a) Redis

503

0

1

2

3

WearLev WriteAmp AvgLat

N
or

m
.v

al
ue

Top10 Rest

(b) YCSB

Fig. 12. Redis and YCSB profiling. Each metric value is normalized to the
corresponding Rest case. “Top10” stands for the ten most frequently written
cache lines.

need to run LENS on the target NVRAM system to obtain

insights on its microarchitecture design, e.g., internal latency

and buffer structures. Then, the users can reconfigure VANS

based on the new parameters and microarchitecture design.

Our modular software design allows users to add additional

architecture components.

V. CLOUD WORKLOAD OPTIMIZATIONS

The advantages of capacity and persistence make NVRAM

a natural fit for memory-hungry cloud applications [30]. In

this section, we use VANS to study the use of NVRAM

for cloud applications. We identify the performance overhead

due to applications’ memory access patterns and alleviate the

overhead with two architecture optimizations.

A. Performance Inefficiency

To understand the NVRAM architectural behavior when

running cloud applications, we run two widely used cloud

workloads, Redis [25] and YCSB [10], in VANS+gem5 full

system simulation with the configuration in Table V. The

results show that the pointer chasing access patterns and the

wear-leveling triggered write amplification are the two primary

sources of inefficiency.

Notable Read Misses. Figure 12a shows that read operations

dominate the execution overhead in Redis. Cycles Per Instruc-

tion (CPI) of read operations is 8.8× higher than CPI of other

workload activities. The major overhead originates from reads

leading to misses in LLC and TLB, due to the pointer chasing

memory access pattern that repeatedly shifts between random

memory regions. Such a pattern is commonly observed in data

structures that are often used in cloud workloads, such as B-

Trees and hash tables [12], [13], [18].

Write Amplification Overhead. Figure 12b shows that most

YCSB writes are concentrated in ten cache lines, which are

written over 100× more than the total of other cache lines.

Compared with accesses to other cache lines, the writes to the

Top10 cache lines, which form only 15% of total memory

traffic, trigger 503× more wear-leveling operations. These

operations lead to higher write amplification than others and

elevate average memory access latency.

B. In Memory Pre-Translation

To address the read miss induced overhead, we propose

Pre-translation to optimize the address translation in the read

operations. We obverse that the NVRAM performs a “page

translation” within the NVRAM DIMM that translates the

physical address to the media address3. To allow the CPU to

concurrently receive data for the current memory access and

the TLB entry for the next memory access, Pre-translation

combines the NVRAM translation with the CPU translation.

As shown in Figure 13a, Pre-translation consists of two

hardware structures – the Pre-translation table and the Read

Lookaside Buffer (RLB) – and a new instruction mkpt.

The Pre-translation table is stored in the on-DIMM DRAM

as a part of an AIT entry [3]. This table maps a physical

address (paddr) to a page frame number (pfn) pointed to

by paddr. In practice, it stores only the pfn and employs

paddr as an index; this allows the integrated DRAM to store

more Pre-translation entries. To take advantage of the existing

translations in AIT, we add a pointer to each AIT entry, so that

it takes only one more DRAM access to find the corresponding

Pre-translation table entry (Figure 13b).

Similar to the TLB, RLB buffers the Pre-translation table

and is stored in SRAM. Each RLB entry consists of a page

frame number from a Pre-translation table entry and a physical

address that is used as the index to the table entry.

The new instruction mkpt is used to update Pre-translation

table. This instruction takes one virtual address as an argument

and hints the memory controller to read or update the Pre-

translation entry. To use this instruction, programmers or

compiler need to insert it before load and store instructions

that lead to a pointer chasing access.

A Pre-translation Involved Example. We use an example

of a linked list traversal to demonstrate the detailed hardware

operations in the Pre-translation, as shown in Figure 13b and

Figure 13c. In this example, the traversal currently visits the

node stored in address vaddr0 (top right Figure 13c), and

generates a pointer chasing access.

To use Pre-translation (Figure 13b), mkpt is invoked to

“mark” a read access to vaddr0 (1). When NVRAM re-

ceives the read request with this mark, it checks the RLB or

Pre-translation table for an entry, using paddr0 as an index

(2). If the Pre-translation entry is found (3), NVRAM uses

the data at paddr0 and page frame number pfn1 from the

Ptr-translation entry to create a TLB entry (4); this entry is

sent to the CPU’s TLB when returning the requested data (5).

In this case, the CPU receives the data at vaddr0 and the

TLB entry for the next access to vaddr1 simultaneously.

The Pre-translation table is updated by mkpt (Figure 13c):

each time when mkpt is invoked with an address vaddr0
(6), the CPU checks if the corresponding Pre-translation

entry is missing or out-of-date. If so, the CPU updates the

Pre-translation entry: it first translates vaddr0 to paddr0
and fetches the data at this address, then it uses this data as a

virtual address (vaddr1) to find out the page frame number

pfn1 (7). Finally, the CPU writes the entry <paddr0,
pfn1> to RLB, if pfn1 is not equal to pfn0 (8).

3“Physical address” refers to the address translated by MMU. The “media
address” refers to the real physical address used in the NVRAM media, which
is transparent to CPU memory controllers.

(a) Overview of Lazy cache and Pre-trans. (b) Pre-trans usage. (c) Pre-trans update.

0.75

1.00

1.25

1.50

FIO-write YCSB TPCC HashMap Redis LinkedList

S
pe

ed
up

Baseline LazyCache Pre-Translation Both

(d) Speedup.

0.5

0.6

0.7

0.8

0.9

1.0

FIO-write YCSB TPCC HashMap Redis LinkedList

N
or

m
.T

LB
M

P
K

I

Baseline Pre-Translation

(e) Pre-translation TLB MPKI.

Fig. 13. Customized Lazy cache(a) for write intensive workloads and Pre-translation(a–c) for pointer chasing read intensive workloads. Baseline in (d–e) is
measured without any optimization mechanism.

Validating Pre-translation Entry. Pre-translation entries may

become stale, when the CPU updates the page table. To reverse

the effect of stale TLB entries, fetched from NVRAM, we

propose a “check-before-read” mechanism, which relies on

the existing NVRAM memory request queue in the CPU’s

memory controller4. We extend each entry in the NVRAM

request queue with a new “uncertain” bit. When CPU gets a

TLB entry from the NVRAM, the memory management unit

(MMU) uses this entry to translate the virtual address and

issues a read request to NVRAM. This read request enters

the NVRAM request queue with the uncertain bit set. In the

meantime, the MMU starts an asynchronized page table walk

to determine whether this TLB entry from NVRAM matches

the latest record in the page table. If this TLB entry is stale, the

memory controller updates the corresponding NVRAM read

request with the latest translation info, issues the updated read

request to NVRAM, and sets the uncertain bit to 0. If the

TLB is up-to-date, then the memory controller just resets the

uncertain bit to 0. The data is not fetched from NVRAM if

the corresponding uncertain bit is 1, so the CPU never gets a

wrong cache line caused by a stale TLB entry.

C. Lazy cache

To reduce the write amplification in cloud workloads, we

add a Lazy cache to NVRAM (Figure 13a) to cache the

frequently written data. It adopts a 2-level inclusive cache,

LZ1 and LZ2, with 64B and 128B granularity, respectively.

It employs a Write Lookaside Buffer (WLB) to store the

addresses of Lazy cache entries.

We reuse AIT’s wear-out record to update Lazy cache: once

a write triggers wear-leveling, AIT calculates the Lazy cache

priority during the data migration; it requires Lazy cache to

cache the incoming write to this location, if the priority is

higher than a certain threshold. This Lazy cache update does

not exacerbate the performance and storage overhead, as AIT

migration is significantly slower than the Lazy cache access

and we reuse the existing AIT records.

4According to Intel’s announcement [49], CPU and NVRAM work in a
request/grant scheme. This indicates that the CPU maintains a memory request
queue in iMC for NVRAM accesses.

Lazy cache relies on the existing ADR [48] to ensure data

persistence in the face of power outages. In Section V-D, we

show that a small Lazy cache (3KB) is efficient in improving

performance and reducing memory traffic. The 3KB Lazy

cache is much smaller than other on-DIMM buffers (16KB

and 16MB). Thus ADR is sufficient to ensure its persistence.

D. Evaluation

To evaluate the performance of Pre-translation and Lazy

cache, we use fio [2], two PMDK [24] microbenchmarks

(HashMap and LinkedList), and three cloud workloads from

WHISPER benchmarking suite [39] (Redis, TPCC and

YCSB). Table V lists our simulation setup. We run unmodified

workloads without any architectural optimization to obtain the

baseline performance.

To compare with baseline, we configure (1) Pre-translation

with a 1KB RLB and a 16MB Pre-translation table and (2)

Lazy cache with a 1KB L1 cache and a 2KB L2 cache. We

modify the workloads’ source code to use Pre-translation, and

use unmodified workloads on Lazy cache.

Figure 13d shows the evaluation results of Pre-translation,

Lazy cache, and a combination of both. Pre-translation

achieves 1% to 48% speedup across all six workloads. It

efficiently optimizes TLB misses to achieve this speedup: as

shown in Figure 13e, Pre-translation reduces the TLB misses

per thousand instruction (MPKI) by 17% on average. Lazy

cache achieves an average of 10% speedup across all six

workloads. It achieves this by detecting memory patterns that

trigger wear leveling on a small region, and caching these

writes accordingly, thereby reducing the write amplification

overhead. Using both Pre-translation and Lazy cache achieves

8% to 49% speedup across all workloads. It does not achieve

the ideal speedup, because enabling both optimizations leads

to higher memory bus contention.

Overall, Pre-translation optimizes pointer chasing, as it

reduces the read operation overhead as well as the TLB miss

rate. Lazy cache is able to reduce the write operation overhead

and write traffic. The combination of these two mechanisms

benefits cloud workloads running on real NVRAM-based

system under various settings.

VI. RELATED WORK

To our knowledge, this is the first paper to unveil the

architecture details of real NVRAM DIMM products in server

systems and develop an architecture-level simulation model

for the device. This section discusses related works.

NVRAM Emulation and Simulation. Besides PMEP [11]

and Quartz [56], previous works also explored using FPGA to

emulate NVRAM, e.g., Lloyd et al. [35] proposed an FPGA

emulator to model the latency projected for NVRAM. How-

ever, most of the emulators model NVRAM by injecting delays

to mimic the NVRAM latency. Previous memory architecture

simulators used to model NVRAM, such as NVMain [44],

DRAMSim2 [46], and Ramulator [32], model NVRAM based

on conventional DRAM DIMM architecture and timing. How-

ever, as discussed in Section II, these emulators and simulators

do not fully model the performance and microarchitecture

characteristics of Optane DIMM.

Optane DIMM System Studies. Most of the existing Optane

DIMM system studies focus on system-level performance

profiling and system software design. Recent works observed

inefficient performance on Optane DIMM by running the

existing NVRAM-aware system software with certain access

patterns. For example, several studies [7], [28], [65] observed

that repeated writes to a concentrated Optane DIMM memory

area lead to high write latency. FlatStore [7] addresses this

issue by grouping small-sized writes and evenly spreading

writes to multiple Optane DIMMs. To reduce the overhead

caused by the long write latency, MOD [17] proposes a frame-

work to build persistent data structures with minimal ordering

instructions. Other studies observed that concurrent or mixed

reads and writes to the Optane DIMM in a remote NUMA

node lead to performance degradation with high-performance

computing and storage workloads [41], [59], [65]. In addition,

multi-threaded memory accesses do not scale well on Optane

DIMM systems [7], [28], [42], [58]. A recent study [65] shows

that one reason behind this issue is the contention in the WPQ

and RMW buffers. Our study shows that the contention in the

AIT Buffer and the LSQ exacerbates this scaling issue. Recent

work [62] investigated two data structure design strategies for

RocksDB: Memtable that generates small random accesses and

FLEX that generates sequential accesses. DRAM-emulated

NVRAM experiments show that Memtable is 19% faster than

FLEX; but experiments on Optane DIMM show that FLEX is

10% faster than Memtable [62]. Our study indicates that one

main reason is that the small random accesses of Memtable

do not fully utilize the buffer capacity and access granularity.

Existing NVRAM-aware system software design may also lead

to high read and write amplification on Optane DIMM [28],

[65]. However, these studies only show the inefficiency from

the system software design perspective. Our study indicates

that one main reason for the amplification is the large on-

DIMM buffer access granularity.

Pointer Chasing Optimizations. Jump pointer [47] proposes

a data prefetching scheme for linked data structures. It requires

a new data field in each data structure. Moreover, it does not

reduce the TLB miss overhead. Our Pre-translation reduces

TLB miss overhead without requiring modification on data

structures. ASAP [36] proposes a prefetcher for page table

walks to reduce the execution time for each TLB miss. Pre-

translation also reduces the TLB miss rate.

VII. CONCLUSION

We design LENS and VANS, a low-level performance pro-

filer for NVRAM systems and an architecture-level memory

simulator that models the recently released Optane DIMM

memory system. Using LENS, we perform a detailed char-

acterization of the Optane DIMM microarchitecture design.

LENS allows users to characterize the performance and reverse

engineer the architecture design of real NVRAM DIMM

systems. VANS allows researchers who do not have access to

Optane DIMM physical devices to explore and evaluate new

design ideas on architecture and systems. Furthermore, both

LENS and VANS are flexible to be used with other NVRAM

systems beyond the current Optane DIMM design.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-

back. This paper is supported in part by NSF grants 1829524,

1817077, and SRC/DARPA Center for Research on Intelligent

Storage and Processing-in-memory.

REFERENCES

[1] “Open source code repository for LENS and VANS,” 2020. [Online].
Available: https://github.com/TheNetAdmin/LENS-VANS

[2] J. Axboe, “Flexible I/O tester,” 2019. [Online]. Available:
https://github.com/axboe/fio

[3] B. Beeler, “Intel Optane DC persistent memory module (PMM),” 2019.
[Online]. Available: https://www.storagereview.com/news/intel-optane-
dc-persistent-memory-module-pmm

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
simulator,” SIGARCH Comput. Archit. News, 2011.

[5] Cadence Design Systems, Inc., “Simulation and testbench verification,”
2019.

[6] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis,
V. Nikitin, X. Tang, S. Watts, S. Wang, S. A. Wolf, A. W. Ghosh,
J. W. Lu, S. J. Poon, M. Stan, W. H. Butler, S. Gupta, C. K. A.
Mewes, T. Mewes, and P. B. Visscher, “Advances and future prospects
of spin-transfer torque random access memory,” IEEE Transactions on
Magnetics, 2010.

[7] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “FlatStore: An
efficient log-structured key-value storage engine for persistent memory,”
in ASPLOS, 2020.

[8] Y. Chen, Y. Lu, B. Zhu, and J. Shu, “Kernel/user-level collaborative
persistent memory file system with efficiency and protection,” arXiv,
2019.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “NV-Heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories,” in ASPLOS, 2011.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SoCC, 2010.

[11] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in EuroSys, 2014.

[12] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems.
Pearson, 2015.

[13] B. Fitzpatrick, “Distributed caching with Memcached,” Linux Journal,
2004.

[14] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kandemir,
and M. Jung, “Amber: Enabling precise full-system simulation with
detailed modeling of all SSD resources,” in MICRO, 2018.

[15] B. Gregg, “Linux perf examples,” 2019. [Online]. Available:
http://www.brendangregg.com/perf

[16] D. Hansen, “Allow persistent memory to be used like normal RAM,”
2019. [Online]. Available: https://patchwork.kernel.org/cover/10829019/

[17] S. Haria, M. D. Hill, and M. M. Swift, “MOD: Minimally ordered
durable datastructures for persistent memory,” in ASPLOS, 2020.

[18] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand,
S. Ghose, and O. Mutlu, “Accelerating pointer chasing in 3D-stacked
memory: Challenges, mechanisms, evaluation,” in ICCD, 2016.

[19] Intel, “2nd generation Intel® Xeon® Scalable processors with Intel®
C620 series chipsets (purley refresh),” 2019.

[20] Intel, “Intel® 64 and IA-32 architectures software developer’s manuals,”
2019.

[21] Intel, “Intel memory latency checker,” 2019.
[22] Intel, “Intel Vtune amplifier,” 2019.
[23] Intel, “Intel® OptaneTM DC Persistent Memory,” 2019. [Online].

Available: https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory

[24] Intel, “Persistent memory development kit,” 2019. [Online]. Available:
https://pmem.io/

[25] Intel, “Pmem-Redis: A version of Redis that uses persistent memory,”
2019. [Online]. Available: https://github.com/pmem/pmem-redis

[26] Intel, “A utility for configuring and managing Intel Optane
DC persistent memory modules,” 2019. [Online]. Available:
https://github.com/intel/ipmctl

[27] Intel, “Utility library for managing the libnvdimm (non-volatile memory
device) sub-system in the Linux kernel,” 2019. [Online]. Available:
https://github.com/pmem/ndctl

[28] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the Intel Optane DC persistent memory
module,” arXiv, 2019.

[29] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-
dambaram, “SplitFS: Reducing software overhead in file systems for
persistent memory,” in SOSP, 2019.

[30] S. Kannan, A. Gavrilovska, K. Schwan, D. Milojicic, and V. Talwar,
“Using active NVRAM for I/O staging,” in PDAC, 2011.

[31] P. Kennedy, “A close look at Intel Optane DC persistent memory
modules,” 2019. [Online]. Available: https://www.servethehome.com/a-
close-look-at-intel-optane-dc-persistent-memory-modules/

[32] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” CAL, 2016.

[33] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating STT-RAM as an energy-efficient main memory alternative,” in
ISPASS, 2013.

[34] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable DRAM alternative,” in ISCA, 2009.

[35] S. Lloyd and M. Gokhale, “Evaluating the feasibility of storage class
memory as main memory,” in MEMSYS, 2016.

[36] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” in MICRO, 2019.

[37] Micron Technology, Inc., “3D XPoint technology,” 2018.
[Online]. Available: https://www.micron.com/products/advanced-
solutions/3d-xpoint-technology

[38] Micron Technology, Inc., “DDR4 SDRAM Verilog model,” 2018.
[39] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,

“An analysis of persistent memory use with WHISPER,” in ASPLOS,
2017.

[40] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Efficient
hardware undo+redo logging for persistent memory systems,” in HPCA,
2018.

[41] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, “Performance
characterization of a DRAM-NVM hybrid memory architecture for HPC
applications using Intel Optane DC persistent memory modules,” in
MEMSYS, 2019.

[42] I. B. Peng, M. B. Gokhale, and E. W. Green, “System evaluation of the
Intel Optane byte-addressable NVM,” in MEMSYS, 2019.

[43] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for cross-CPU attacks,” in SEC, 2016.

[44] M. Poremba, T. Zhang, and Y. Xie, “NVMain 2.0: A user-friendly
memory simulator to model non-volatile memory systems,” CAL, 2015.

[45] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “ThyNVM:
Enabling software-transparent crash consistency in persistent memory
systems,” in MICRO, 2015.

[46] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” CAL, 2011.

[47] A. Roth and G. S. Sohi, “Effective jump-pointer prefetching for linked
data structures,” in ISCA, 1999.

[48] A. M. Rudoff, “Deprecating the pcommit instruction,” 2016. [Online].
Available: https://software.intel.com/en-us/blogs/2016/09/12/deprecate-
pcommit-instruction

[49] ServeTheHome, “Intel Optane DCPMM uth DDR T protocol,” 2019.
[Online]. Available: https://www.servethehome.com/2nd-gen-intel-xeon-
scalable-launch-cascade-lake-details-and-analysis/intel-optane-dcpmm-
uth-ddr-t-protocol/

[50] Standard Performance Evaluation Corporation, “SPEC CPU 2006,”
2019. [Online]. Available: https://www.spec.org/cpu2006/

[51] Standard Performance Evaluation Corporation, “SPEC CPU 2017,”
2019. [Online]. Available: https://www.spec.org/cpu2017/

[52] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari,
Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and D. Kaeli, “MG-
PUSim: Enabling multi-GPU performance modeling and optimization,”
in ISCA, 2019.

[53] K. Suzuki and S. Swanson, “The non-volatile memory technology
database (NVMDB),” Department of Computer Science & Engineering,
University of California, San Diego, Tech. Rep. CS2015-1011, 2015.
[Online]. Available: http://nvmdb.ucsd.edu

[54] E. Vianello, O. Thomas, G. Molas, O. Turkyilmaz, N. Jovanović,
D. Garbin, G. Palma, M. Alayan, C. Nguyen, J. Coignus, B. Gi-
raud, T. Benoist, M. Reyboz, A. Toffoli, C. Charpin, F. Clermidy,
and L. Perniola, “Resistive memories for ultra-low-power embedded
computing design,” in IEDM, 2014.

[55] V. Viswanathan, “Disclosure of hardware prefetcher control on some in-
tel processors,” 2014. [Online]. Available: https://software.intel.com/en-
us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

[56] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A
lightweight performance emulator for persistent memory software,” in
Middleware, 2015.

[57] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ASPLOS, 2011.

[58] D. Waddington, M. Kunitomi, C. Dickey, S. Rao, A. Abboud, and
J. Tran, “Evaluation of Intel 3D-Xpoint NVDIMM technology for
memory-intensive genomic workloads,” in MEMSYS, 2019.

[59] M. Weiland, H. Brunst, T. Quintino, N. Johnson, O. Iffrig, S. Smart,
C. Herold, A. Bonanni, A. Jackson, and M. Parsons, “An early evaluation
of Intel’s Optane DC persistent memory module and its impact on high-
performance scientific applications,” in SC, 2019.

[60] WikiChip, “Cascade Lake - microarchitectures - Intel,” 2020.
[61] H. . P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T.

Chen, and M. Tsai, “Metal-oxide RRAM,” IEEE, 2012.
[62] J. Xu, J. Kim, A. Memaripour, and S. Swanson, “Finding and fixing

performance pathologies in persistent memory software stacks,” in
ASPLOS, 2019.

[63] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” in FAST, 2016.

[64] J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A distributed file system
for non-volatile main memory and RDMA-capable networks,” in FAST,
2019.

[65] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in FAST, 2020.

[66] V. Young, Z. A. Chishti, and M. K. Qureshi, “TicToc: Enabling
bandwidth-efficient DRAM caching for both hits and misses in hybrid
memory systems,” in ICCD, 2019.

[67] L. Zhang and S. Swanson, “Pangolin: A fault-tolerant persistent memory
programming library,” in ATC, 2019.

[68] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the
performance gap between systems with and without persistence support,”
in MICRO, 2013.

[69] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: Fair and high-performance
memory control for persistent memory systems,” in MICRO, 2014.

[70] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA, 2009.

